Pages

Sunday 10 May 2015

Managing Your Mission-Critical Knowledge

When executives talk about “knowledge management” today, the conversation usually turns very quickly to the challenge of big data and analytics. That’s hardly surprising: Extraordinary amounts of rich, complicated data about customers, operations, and employees are now available to most managers, but that data is proving difficult to translate into useful knowledge. Surely, the thinking goes, if the right experts and the right tools are set loose on those megabytes, brilliant strategic insights will emerge.
Tantalizing as the promise of big data is, an undue focus on it may cause companies to neglect something even more important—the proper management of all their strategic knowledge assets: core competencies, areas of expertise, intellectual property, and deep pools of talent. We contend that in the absence of a clear understanding of the knowledge drivers of an organization’s success, the real value of big data will never materialize.
Yet few companies think explicitly about what knowledge they possess, which parts of it are key to future success, how critical knowledge assets should be managed, and which spheres of knowledge can usefully be combined. In this article we’ll describe in detail how to manage this process.
Map Your Knowledge Assets
The first step is to put boundaries around what you’re trying to do. Even if you tried to collect and inventory all the knowledge floating around your company—the classic knowledge-management approach—you wouldn’t get anything useful from the exercise (and you’d suffer badly from cognitive overload). Our goal is to help you understand which knowledge assets—alone or in new combinations—are key to your future growth. We would bet heavily that if your company has a knowledge-management system, it doesn’t adequately parse out your mission-critical knowledge.
Identifying and mapping strategic knowledge is iterative. In our work with organizations we generally start by assembling a multifunctional team—at the organizational, divisional, or business unit level—to articulate what the members consider to be key dimensions of the company’s competitive performance and the knowledge that underpins them. It can be useful to shape this conversation by giving individuals assignments in advance. Senior managers might be asked to outline the business model and high-level critical knowledge, such as areas of advanced expertise, intellectual property, and the relationships with customers, suppliers, and distributors that make that model successful. Market researchers and sales managers might be asked to delineate the attributes of new products and services that customers will need in the near future. Technical and operations managers might describe organizational routines that support needed areas of expertise. And so on. (The right mix of people will depend on the business context and how clearly the senior team has thought through its future strategy.)
This step alone can be quite challenging the first time around. When we worked with a group of decision makers at ATLAS, the major particle physics experiment at the European Organization for Nuclear Research (CERN), we interviewed many stakeholders to get a holistic view of the knowledge underpinning its success and then surveyed nearly 200 other members of the organization. Ultimately we mapped only a portion of the ATLAS knowledge base, but in the process we whittled down a list of 26 knowledge domains to the eight that were deemed most important to organizational outcomes.
Absent a clear understanding of your knowledge assets, big data’s value won’t materialize.
Your list of key assets should ultimately include some that are “hard,” such as technical proficiency, and some that are “soft,” such as a culture that supports intelligent risk taking. You may also have identified knowledge that you should possess but don’t or that you suspect needs shoring up. This, too, should be captured.
The next step is to map your assets on a simple grid along two dimensions: tacit versus explicit (unstructured versus structured) and proprietary versus widespread (undiffused versus diffused). The exhibit “What Kind of Knowledge Is This?” which includes a mapping grid, will help you figure out where to place your knowledge assets on your own map. (We owe a debt to Sidney G. Winter, Ikujiro Nonaka, and the late Max Boisot for their work on these dimensions. Had he lived, Boisot would have been a coauthor on this article.)

Unstructured versus structured.

Unstructured (tacit) knowledge involves deep, almost intuitive understanding that is hard to articulate; it’s generally rooted in great expertise. World-class, highly experienced engineers may intuit how to solve technical problems that nobody else can (and may be unable to explain their intuition). Rainmakers in a strategy consulting firm know in their bones how to steer a conversation or a discussion, develop a relationship, and close a deal, but they would have trouble telling colleagues why they made a particular move at a particular moment.
Structured (explicit or codified) knowledge is easier to communicate: A company that’s expert in the use of discovery-driven planning, for example, can bring people up to speed on that methodology quickly because it has given them recourse to a common language, rules of thumb, and conceptual frameworks. Some knowledge is so fully structured that it can be captured in patents, software, or other intellectual property.

Undiffused versus diffused.

To what extent is the knowledge spread through—or outside—the company? One division may have expertise in negotiating with officials of the Chinese government, for example, which another division totally lacks. That knowledge is obviously undiffused. But most companies have certain broadly shared competencies: Those in the consumer packaged goods industry tend to have companywide strength in developing and marketing new brands; and many employees in the defense industry know a lot about bidding on government contracts. Some knowledge, of course, is diffused far beyond the boundaries of the organization.
Interpret the Map
Simply mapping your knowledge assets and then discussing the map with your senior team can uncover important insights and ideas for value creation, as our experience with decision makers at Boeing and ATLAS demonstrate.

Global sourcing at Boeing.

Sourcing managers at Boeing were aware that their relationships with internationally dispersed customers, suppliers, and partners were changing. The whole ecosystem was sharing in the creation of new aircraft technologies and services and in the associated risks. Future success would depend on learning to manage this interdependence.
With that insight in mind, the managers mapped the critical knowledge assets in their global sourcing activities, which ultimately resulted in a research paper that one of us (Martin Ihrig) coauthored with Sherry Kennedy-Reid of Boeing. They saw that cost-related knowledge—performance metrics, IP strategy, and supply-base management—was well structured and widely diffused. However, knowledge about supplier capabilities, although codified, had not spread throughout the Boeing sourcing community. And other knowledge that was important to future value creation—how to leverage Boeing’s potent and technically sophisticated culture for effective communication and negotiation, determine Boeing’s business needs and global sourcing strategy, and, most important, assess the geopolitical influences on global sourcing decisions—was neither codified nor widely shared.
Taken together, these observations suggested that Boeing was placing greater emphasis on technical efficiencies, such as improving processes and productivity, than on strategic growth, such as creating research initiatives with suppliers or building a shared innovation platform. As Boeing’s business became progressively more intertwined with that of its ecosystem partners, the development of knowledge assets would need to change.
Insights from this mapping exercise enabled the team to recommend several initiatives aimed at developing and disseminating tacit knowledge, such as a program to help employees who had a deeper understanding of geopolitical influences to put some structure around their knowledge and pass it on to others in the company, and a program to identify the capabilities of key suppliers and determine how Boeing could work more strategically with them.

Advanced physics at CERN.

The experimental work done at ATLAS is carried out by thousands of visiting scientists from 177 organizations in 38 countries, working without a traditional top-down hierarchy. This extraordinary operation has had spectacular results, including the discovery of the Higgs boson, for which Peter Higgs and François Englert were awarded a Nobel Prize in 2013. Our mapping of ATLAS’s knowledge base was done in a research partnership with Agustí Canals, Markus Nordberg, and Max Boisot.
Our team had a surprising insight when a study of that map revealed that “overview of the ATLAS experiment” was one of the top eight knowledge domains. We hadn’t given much thought to that domain, but we quickly realized how central it was to a knowledge-development program like ATLAS. Changes in the overall direction of a project can’t easily be codified when the project is so complex. The direction is continually evolving, and not necessarily in a linear fashion, as the technical and scientific work advances; but individual researchers can’t adapt their work accordingly when they don’t know what that direction is. ATLAS requires that huge numbers of people, from many countries and cultures, understand what others are learning and how it affects the overall technical direction.
Without the knowledge map, the leadership team at ATLAS would have predicted that scientific and technical knowledge were regarded as mission critical—indeed, most existing resources went to helping those domains make progress. But we found it extraordinary that the soft domains of project management and communication skills also emerged as central to ATLAS’s performance. Retrospectively, that made sense: A consensus on overall direction depends on the successful sharing of knowledge among specializations and between scientists as they cycle back to their home organizations and new people take their place. These important soft domains were much less developed and not well diffused; clearly, they needed more resources and attention.
Identify New Opportunities
Mapping knowledge assets and discussing their implications often leads directly to strategic insights, as it did at Boeing and ATLAS. But we also find it helpful to systematically explore what would happen if knowledge were moved around on the map or different spheres of it were combined. Here are some examples:

Selectively structure tacit knowledge (move it up on your map’s Y axis).

The proprietary knowledge assets in the lower left corner of your map are often the most important knowledge your company has—the deep-seated source of future strategic advantage. You need to think about which of them can and should become more structured so that (for example) your basic research will lead to the creation of bona fide intellectual property that can be developed into new products, licensed, or otherwise monetized. Structuring tacit knowledge often involves capturing expert employees’ insights with the ultimate goal of disseminating them to many more people in the company. In general, speeding up codification will increase the value of knowledge. But making the tacit explicit can also be dangerous. The more codified the knowledge is, the more easily it may be diffused and copied externally.


When you’re trying to decide what to structure further and what to keep tacit, it can be useful to distinguish between product and process. Suppose you’ve decided that your expertise in some technical domain can be codified into intellectual property. You may want to capture some of your process knowledge—whether it’s an engineer’s know-how or the conversational routines your marketing people use to tease out emerging customer needs—only informally. That way, even if a patent expires or codified knowledge is leaked, essential experience stays within the company.

0 comments:

Post a Comment